Adjunction inequality for real algebraic curves

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exotic structures and adjunction inequality

Theorem 1.1. ([E]) Let X = B ∪ (1-handles) ∪ (2-handles) be four-dimensional handlebody with one 0-handle and no 3or 4-handles. Then • The standard symplectic structure on B can be extended over 1-handles so that manifold X1 = B 4 ∪ (1-handles) is a compact Stein domain. • If each 2-handle is attached to ∂X1 along a Legendrian knot with framing one less then Thurston-Bennequin framing of this k...

متن کامل

Real Plane Algebraic Curves

We study real algebraic plane curves, at an elementary level, using as little algebra as possible. Both cases, affine and projective, are addressed. A real curve is infinite, finite or empty according to the fact that a minimal polynomial for the curve is indefinite, semi–definite nondefinite or definite. We present a discussion about isolated points. By means of the operator, these points can ...

متن کامل

Clifford Theorem for real algebraic curves

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme over R of dimension 1. A closed point P of X will be called a real point if the residue field at P is R, and a non-real point if the residue field at P is C. The set of real points, X(R), will always be assumed to be non empty. It decomposes into finitely many connected components, whose number will be denot...

متن کامل

Algorithms for Rational Real Algebraic Curves

In this paper, we study fundamental properties of real curves, especially of rational real curves, and we derive several algorithms to decide the reality and rationality of curves in the complex plane. Furthermore, if the curve is real and rational, we determine a real parametrization. More precisely, we present a reality test algorithm for plane curves, and three different types of real parame...

متن کامل

Real Parametrization of Algebraic Curves

There are various algorithms known for deciding the parametrizability (rationality) of a plane algebraic curve, and if the curve is rational, actually computing a parametrization. Optimality criteria such as low degrees in the parametrization or low degree field extensions are met by some parametrization algorithms. In this paper we investigate real curves. Given a parametrizable plane curve ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 1997

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.1997.v4.n1.a5